吾尊百科网

中央处理器

CPU    CPU  中央处理器(Central Processing Unit),简称CPU,是电子计算机的主要设备之一,是处理机中解释和执行指令的部件。其功能主要是解释计算机指令以及处理计算机软件中的数据。CPU与内部存储器、输入/输出设备同是现代电脑的三大内核部件。

名词定义

  中央处理器(Central Processing Unit),简称CPU,是电子计算机的主要设备之一,是处理机中解释和执行指令的部件。其功能主要是解释计算机指令以及处理计算机软件中的数据。  所谓计算机的可编程性主要是指对CPU的编程。CPU、内部存储器和输入/输出设备是现代电脑的三大内核部件。由集成电路制造的CPU,20世纪70年代以前,本来是由多个独立单元构成,后来发展出微处理器CPU复杂的电路可以做成单一微小功能强大的单元。

构成元素

·物理构成

CPU正面俯视图     CPU正面俯视图  在实际应用中,最直观的还是CPU的外形,目前CPU的物理结构分为内核、基板、填充物、散热器、封装及接口等部分。  (1)内核:CPU从外形上看是一个矩形片状物体,中间凸起的一片薄薄的、有指甲大小的硅晶片部分是CPU的核心,称为“die”。这块“die”上密布着数以万计的晶体管,每一个晶体管焊上一根导线连到外电路上,它们相互配合协调,完成各种复杂的操作和运算。目前CPU晶体管数目已超过1亿个。Prescott拥有1.25亿个晶体管,纯粹应用于计算所需的晶体管大约有7 000万个。工作时CPU内核会散发出大量的热,核心内部温度可以达到上百摄氏度,所以要保持CPU在合适的温度下工作就需要更高的工艺。  (2)基板:CPU基板是承载CPU内核所用的材料,它负责内核芯片与外界的连接。背面的金属引脚     背面的金属引脚  早期CPU基板是采用陶瓷制成的,主要是早先的Duron等。现在的P4,Athlon XP以及现在新的Duron等,都开始采用有机材料制作,它能够更好地提供电器性能。CPU基板将CPU内部的信号引到CPU引脚上。基板的背面有许多密密麻麻的镀金引脚,它是CPU与外部电路连接的通道,同时也起着固定CPU的作用。  (3)填充物:CPU内核与CPU基板之间还有填充物。因为CPU的核心工作强度大,发热量也大,所以为了CPU核心的安全,同时也为了核心散热,在CPU的核心上加装了一个金属盖。这个金属盖可以缓解来自散热器的压力,固定芯片和电路基板,避免核心受到伤害,还可以增加核心的散热面积。  (4)散热器:为了CPU散热安全,在CPU上加装了一个CPU散热器。散热器通常由一个合金散热片和一个散热风扇组成,用来将CPU核心产生的热量快速散发。

·逻辑构成

Intel P4原装散热器  Intel P4原装散热器  中央处理器包括处理机中的运算器和系统控制器。系统控制器不仅解释指令,执行控制型指令,还提供全机控制系统的硬件支援,因而表示和控制处理机运行状态、实现实时处理和系统管理的中断系统等也属于中央处理器。CPU有两种工作状态,用户程序运行时处理机处于“目的程序状态”(简称“目态”);系统管理程序运行时则处于“管理程序状态”(简称“管态”)。中央处理器的系统管理指令只能在“管态”下运行,成为特权指令,用户使用这些指令会导致系统的混乱,因而处理机监督这种违法使用的情况。CPU响应中断可能会改变CPU的程序状态,甚至改变它的内部状态等。这些都需要中央处理器的硬件支援。  指令是中央处理器直接识别的机器语言的基本单位。一条运算指令一般指定一种操作和若干操作数;一条控制指令则指定中央处理器的状态,设置和改变各个控制寄存器的内容。中央处理器既是一个按用户程序要求处理数据的部件,又是负责整个系统控制的部件。它的运算器实现算术、逻辑运算和数据移位、传送的功能;系统控制器则实现指令译码、寻址变址、存取数据、控制运算、执行控制指令、接收中断请求以及对中断按优先级排队。  中央处理器除包含运算器和传统的运算控制器(简称控制器)外,在结构上还包含中断系统、通用寄存器和堆栈等部分。中断系统是系统控制器的一个重要组成部分,它由中断请求寄存器、中断屏蔽寄存器和排队优先线路组成。  通用寄存器(以至便笺存储器或局部存储器),是中央处理器的重要部件。它可以在一个中央处理器时钟周期内完成读或写操作。按地址存取的通用寄存器、浮点寄存器、控制寄存器、程序计数器和堆栈指针一般都放在局部存储器中。在采用微程序控制的中央处理器中,微程序工作寄存器、微堆栈以及状态保留寄存器均可在局部存储器分配到存储单元。有时,它还可用作输入-输出通道的数据缓冲存储器。这种局部存储器可以是一个或几个。  堆栈是中央处理器的一个常用部件。它一般按后进先出规则存取信息,故又称“后进先出存储器”。它包括栈基、栈限和栈顶三个指针寄存器。栈基指向栈的底部,栈限指示栈的最大长度,栈顶指向堆栈中现行信息顶部。堆栈可以设在主存储器或局部存储器中,也可以将栈顶若干单元存放在寄存器中,其余部分使用存储器单元。堆栈常用在采用零地址机器指令的CPU中,作为向运算器提供操作数和存放运算结果的指定部件。堆栈还常用于中断保护和程序调用与嵌套两种情况。①中断保护:CPU响应中断时,首先将中断现场的处理机状态存入堆栈。待中断处理完毕退出中断时,从堆栈中取出保留信息、恢复原先的处理机状态,保证被中断程序的继续执行。②程序调用和嵌套:从主程序转子程序或子程序又套用子程序时,每一次都将转子程序的返回地址压入堆栈,如此可以层层嵌套。每个子程序的结尾,执行一条返回指令,自动从栈顶取出返回地址送入程序计数器。由于堆栈是后进先出的,可保证中央处理器从里向外逐层执行子程序,实现多重子程序的递归。

工作原理

  CPU的主要运作原理,不论其外观,都是执行储存于被称为程序里的一系列指令。在此讨论的是遵循普遍的冯·诺伊曼架构设计的装置。程序以一系列数字储存在计算机内存中。差不多所有的冯·诺伊曼-CPU的运作原理可分为四个阶段:提取(fetch)、解码(decode)、执行(execute)和写回(writeback)。LGA 775处理器接口    LGA 775处理器接口

·提取

  提取是指从程序内存中检索指令(为数值或一系列数值)。由程序计数器(PC)指定程序内存的位置,程序计数器保存供识别目前程序位置的数值。换言之,程序计数器记录了CPU在目前程序里的踪迹。提取指令之后,PC根据指令式长度增加内存单元(iwordlength)。指令的提取常常必须从相对较慢的内存查找,导致CPU等候指令的送入。这个问题主要被论及在现代处理器的高速缓存和管线化架构。

·解码

  CPU根据从内存提取到的指令来决定其执行行为。在解码阶段,指令被拆解为有意义的片断。根据CPU的指令集架构(ISA)定义将数值解译为指令[isa]。一部分的指令数值为运算码(opcode),其指示要进行哪些运算。其它的数值通常供给指令必要的信息,诸如一个加法(addition)运算的运算目标。这样的运算目标也许提供一个常数值(即立即值),或是一个空间的寻址值:寄存器或内存地址,以寻址模式决定。在旧的设计中,CPU里的指令解码部分是无法改变的硬体装置。不过在众多抽象且复杂的CPU和ISA中,一个微程序时常用来帮助转换指令为各种形态的讯号。这些微程序在已成品的CPU中往往可以重写,方便变更解码指令。

·执行

  在提取和解码阶段之后,接着进入执行阶段。该阶段中,连接到各种能够进行所需运算的CPU部件。例如,要求一个加法运算,算数逻辑单元(ALU,arithmetic logic unit)将会连接到一组输入和一组输出。输入提供了要相加的数值,而且在输出将含有总和结果。ALU内含电路系统,以于输出端完成简单的普通运算和逻辑运算(比如加法和位运算)。如果加法运算产生一个对该CPU处理而言过大的结果,在标志寄存器里,运算溢出(arithmetic overflow)标志可能会被设置(参见以下的数值精度探讨)。

·写回

  最终阶段,写回,以一定格式将执行阶段的结果简单的写回。运算结果极常被写进CPU内部的寄存器,以供随后指令快速访问。在其它案例中,运算结果可能写进速度较慢,但容量较大且较便宜的主存。某些类型的指令会操作程序计数器,而不直接产生结果数据。这些一般称作“跳转”(jumps)并在程序中带来循环行为、条件性执行(透过条件跳转)和函数[jumps]。许多指令也会改变标志寄存器的状态位。这些标志可用来影响程序行为,缘由于它们时常显出各种运算结果。例如,以一个“比较”指令判断两个值的大小,根据比较结果在标志寄存器上设置一个数值。这个标志可借由随后的跳转指令来决定程序动向。  在执行指令并写回结果数据之后,程序计数器的值会递增,反复整个过程,下一个指令周期正常的提取下一个顺序指令。如果完成的是跳转指令,程序计数器将会修改成跳转到的指令地址,且程序继续正常执行。许多复杂的CPU可以一次提取多个指令、解码,并且同时执行。这个部分一般涉及“经典RISC管线”,那些实际上是在众多使用简单CPU的电子装置中快速普及(常称为微控制器 microcontrollers)

发展历程

  中央处理器任何东西从发展到壮大都会经历一个过程,CPU能够发展到今天这个规模和成就,其中的发展史更是耐人寻味。作为电脑之“芯”的CPU也不例外,让我们进入时间不长却风云激荡的CPU发展历程中去。在这个回顾的过程中,我们主要叙述了目前两大CPU巨头——Intel和AMD的产品发展历程,对于其他的CPU公司,例如Cyrix和IDT等,因为其产品我们极少见到,不再累述。

·X86时代

  CPU的溯源可以一直去到1971年。在那一年,当时还处在发展阶段的INTEL公司推出了世界上第一台微处理器4004。这不但是第一个用于计算器的4位微处理器,也是第一款个人有能力买得起的电脑处理器。4004含有2300个晶体管,功能相当有限,而且速度还很慢,被当时的蓝色巨人IBM以及大部分商业用户不屑一顾,但是它毕竟是划时代的产品,从此以后,INTEL便与微处理器结下了不解之缘。可以这么说,CPU的历史发展历程其实也就是INTEL公司X86系列CPU的发展历程,我们就通过它来展开我们的“CPU历史之旅”。  1978年,Intel公司再次领导潮流,首次生产出16位的微处理器,并命名为i8086,同时还生产出与之相配合的数学协处理器i8087,这两种芯片使用相互兼容的指令集,但在i8087指令集中增加了一些专门用于对数、指数和三角函数等数学计算指令。由于这些指令集应用于i8086和i8087,所以人们也这些指令集统一称之为X86指令集。虽然以后Intel又陆续生产出第二代、第三代等更先进和更快的新型CPU,但都仍然兼容原来的X86指令,而且Intel在后续CPU的命名上沿用了原先的X86序列,直到后来因商标注册问题,才放弃了继续用阿拉伯数字命名。至于在后来发展壮大的其他公司,例如AMD和Cyrix等,在486以前(包括486)的CPU都是按Intel的命名方式为自己的X86系列CPU命名,但到了586时代,市场竞争越来越厉害了,由于商标注册问题,它们已经无法继续使用与Intel的X86系列相同或相似的命名,只好另外为自己的586、686兼容CPU命名了。  1979年,INTEL公司推出了8088芯片,它仍旧是属于16位微处理器,内含29000个晶体管,时钟频率为4.77MHz,地址总线为20位,可使用1MB内存。8088内部数据总线都是16位,外部数据总线是8位,而它的兄弟8086是16位。1981年8088芯片首次用于IBM PC机中,开创了全新的微机时代。也正是从8088开始,PC机(个人电脑)的概念开始在全世界范围内发展起来。   1982年,许多年轻的读者尚在襁褓之中的时候,INTE已经推出了划时代的最新产品枣80286芯片,该芯片比8006和8088都有了飞跃的发展,虽然它仍旧是16位结构,但是在CPU的内部含有13.4万个晶体管,时钟频率由最初的6MHz逐步提高到20MHz。其内部和外部数据总线皆为16位,地址总线24位,可寻址16MB内存。从80286开始,CPU的工作方式也演变出两种来:实模式和保护模式。  1985年INTEL推出了80386芯片,它是80X86系列中的第一种32位微处理器,而且制造工艺也有了很大的进步,与80286相比,80386内部内含27.5万个晶体管,时钟频率为12.5MHz,后提高到20MHz,25MHz,33MHz。80386的内部和外部数据总线都是32位,地址总线也是32位,可寻址高达4GB内存。它除具有实模式和保护模式外,还增加了一种叫虚拟86的工作方式,可以通过同时模拟多个8086处理器来提供多任务能力。除了标准的80386芯片,也就是我们以前经常说的80386DX外,出于不同的市场和应用考虑,INTEL又陆续推出了一些其它类型的80386芯片:80386SX、80386SL、80386DL等。1988年推出的80386SX是市场定位在80286和80386DX之间的一种芯片,其与80386DX的不同在于外部数据总线和地址总线皆与80286相同,分别是16位和24位(即寻址能力为16MB)。1990年推出的80386 SL和80386 DL都是低功耗、节能型芯片,主要用于便携机和节能型台式机。80386 SL与80386 DL的不同在于前者是基于80386SX的,后者是基于80386DX的,但两者皆增加了一种新的工作方式:系统管理方式(SMM)。当进入系统管理方式后,CPU就自动降低运行速度、控制显示屏和硬盘等其它部件暂停工作,甚至停止运行,进入“休眠”状态,以达到节能目的。  1989年,我们大家耳熟能详的80486芯片由INTEL推出,这种芯片的伟大之处就在于它实破了100万个晶体管的界限,集成了120万个晶体管。80486的时钟频率从25MHz逐步提高到33MHz、50MHz。80486是将80386和数学协处理器80387以及一个8KB的高速缓存集成在一个芯片内,并且在80X86系列中首次采用了RISC(精简指令集)技术,可以在一个时钟周期内执行一条指令。它还采用了突发总线方式,大大提高了与内存的数据交换速度。由于这些改进,80486的性能比带有80387数学协处理器的80386DX提高了4倍。80486和80386一样,也陆续出现了几种类型。上面介绍的最初类型是80486DX。1990年推出了80486SX,它是486类型中的一种低价格机型,其与80486DX的区别在于它没有数学协处理器。80486 DX2由系用了时钟倍频技术,也就是说芯片内部的运行速度是外部总线运行速度的两倍,即芯片内部以2倍于系统时钟的速度运行,但仍以原有时钟速度与外界通讯。80486 DX2的内部时钟频率主要有40MHz、50MHz、66MHz等。80486 DX4也是采用了时钟倍频技术的芯片,它允许其内部单元以2倍或3倍于外部总线的速度运行。为了支持这种提高了的内部工作频率,它的片内高速缓存扩大到16KB。80486 DX4的时钟频率为100MHz,其运行速度比66MHz的80486 DX2快40%。80486也有SL增强类型,其具有系统管理方式,用于便携机或节能型台式机。

·奔腾时代

  1.奔腾开端Pentium 4 550处理器  Pentium 4 550处理器  继承着80486大获成功的东风,INTEL在1993年推出了全新一代的高性能处理器——奔腾。由于CPU市场的竞争越来越趋向于激烈化,INTEL觉得不能再让AMD和其他公司用同样的名字来抢自己的饭碗了,于是提出了商标注册,由于在美国的法律里面是不能用阿拉伯数字注册的,于是INTEL玩了花样,用拉丁文去注册商标。奔腾在拉丁文里面就是“五”的意思了。INTEL公司还替它起了一个相当好听的中文名字——奔腾。奔腾的厂家代号是P54C,奔腾的内部含有的晶体管数量高达310万个,时钟频率由最初推出的60MHZ和66MHZ,后提高到200MHZ。单单是最初版本的66MHZ的奔腾微处理器,它的运算性能比33MHZ的80486 DX就提高了3倍多,而100MHZ的奔腾则比33MHZ的80486 DX要快6至8倍。也就是从奔腾开始,我们大家有了超频这样一个用尽量少的钱换取尽量多的性能的好方法。作为世界上第一个586级处理器,奔腾也是第一个令人超频的最多的处理器,由于奔腾的制造工艺优良,所以整个系列的CPU的浮点性能也是各种各样性能是CPU中最强的,可超频性能最大,因此赢得了586级CPU的大部分市场。奔腾家族里面的频率有60/66/75//90/100/120/133/150/166/200,至于CPU的内部频率则是从60MHz到66MHz不等。值得一提的是,从奔腾75开始,CPU的插座技术正式从以前的Socket4转换到同时支持Socket 5和7同时支持,其中Socket 7还一直沿用至今。而且所有的奔腾CPU里面都已经内置了16K的一级缓存,这样使它的处理性能更加强大。  与此同时,AMD公司也不甘示弱推出了K5系列的CPU。(AMD公司也改名字了!)它的频率一共有六种:75/90/100/120/133/166,内部总线的频率和奔腾差不多,都是60或者66MHz,虽然它在浮点运算方面比不上奔腾,但是由于K5系列CPU都内置了24KB的一级缓存,比奔腾内置的16KB多出了一半,因此在整数运算和系统整体性能方面甚至要高于同频率的奔腾。即便如此,因为k5系列的 交付日期一再后拖,AMD公司在“586”级别的竞争中最终还是败给了INTEL。1、初受挫折——奔腾 Pro:CPU市场的INTEL并没有停下自己的脚步,在其他公司还在不断追赶自己的奔腾之际,又在1996年推出了最新一代的第六代X86系列CPU——P6。P6只是它的研究代号,上市之后P6有了一个非常响亮的名字——奔腾 Pro。Pentimu Pro的内部含有高达550万个的晶体管,内部时钟频率为133MHZ,处理速度几乎是100MHZ的奔腾的2倍。Pentimu Pro的一级(片内)缓存为8KB指令和8KB数据。   值得注意的是在Pentimu Pro的一个封装中除Pentimu Pro芯片外还包括有一个256KB的二级缓存芯片,两个芯片之间用高频宽的内部通讯总线互连,处理器与高速缓存的连接线路也被安置在该封装中,这样就使高速缓存能更容易地运行在更高的频率上。奔腾 Pro 200MHZCPU的L2 CACHE就是运行在200MHZ,也就是工作在与处理器相同的频率上。这样的设计领奔腾 Pro达到了最高的性能。而Pentimu Pro最引人注目的地方是它具有一项称为“动态执行”的创新技术,这是继奔腾在超标量体系结构上实现实破之后的又一次飞跃。Pentimu Pro系列的工作频率是150/166/180/200,一级缓存都是16KB,而前三者都有256KB的二级缓存,至于频率为200的CPU还分为三种版本,不同就在于他们的内置的缓存分别是256KB,512KB,1MB。不过由于当时缓存技术还没有成熟,加上当时缓存芯片还非常昂贵,因此尽管Pentimu Pro性能不错,但远没有达到抛离对手的程度,加上价格十分昂贵,一次Pentimu Pro实际上出售的数目非常至少,市场生命也非常的短,Pentimu Pro可以说是Intel第一个失败的产品。  2.辉煌的开始——奔腾 MMX  INTEL吸取了奔腾 Pro的教训,在1996年底推出了奔腾系列的改进版本,厂家代号P55C,也就是我们平常所说的奔腾 MMX(多能奔腾)。这款处理器并没有集成当时卖力不讨好的二级缓存,而是独辟蹊径,采用MMX技术去增强性能。  MMX技术是INTEL最新发明的一项多媒体增强指令集技术,它的英文全称可以翻译“多媒体扩展指令集”。MMX是Intel公司在1996年为增强奔腾 CPU在音像、图形和通信应用方面而采取的新技术,为CPU增加了57条MMX指令,除了指令集中增加MMX指令外,还将CPU芯片内的L1缓存由原来的16KB增加到32KB(16K指命 16K数据),因此MMX CPU比普通CPU在运行含有MMX指令的程序时,处理多媒体的能力上提高了60%左右。MMX技术不但是一个创新,而且还开创了CPU开发的新纪元,后来的SSE,3D NOW。等指令集也是从MMX发展演变过来的。   在Intel推出奔腾 MMX的几个月后,AM也推出了自己研制的新产品K6。K6系列CPU一共有五种频率,分别是:166/200/ 233/266/300,五种型号都采用了66外频,但是后来推出的233/266/300已经可以通过升级主板的BIOS 而支持100外频,所以CPU的性能得到了一个飞跃。特别值得一提的是他们的一级缓存都提高到了64KB,比MMX足足多了一倍,因此它的商业性能甚至还优于奔腾 MMX,但由于缺少了多媒体扩展指令集这道杀手锏,K6在包括游戏在内的多媒体性能要逊于奔腾 MMX。  3.优势的确立——奔腾 Ⅱ  1997年5月,INTEL又推出了和奔腾 Pro同一个级别的产品,也就是影响力最大的CPU——奔腾 Ⅱ。第一代奔腾 Ⅱ核心称为Klamath。作为奔腾Ⅱ的第一代芯片,它运行在66MHz总线上,主频分233、266、300、333Mhz四种,接着又推出100Mhz总线的奔腾 Ⅱ,频率有300、350、400、450Mhz。奔腾II采用了与奔腾 Pro相同的核心结构,从而继承了原有奔腾 Pro处理器优秀的32位性能,但它加快了段寄存器写操作的速度,并增加了MMX指令集,以加速16位操作系统的执行速度。由于配备了可重命名的段寄存器,因此奔腾Ⅱ可以猜测地执行写操作,并允许使用旧段值的指令与使用新段值的指令同时存在。在奔腾Ⅱ里面,Intel一改过去BiCMOS制造工艺的笨拙且耗电量大的双极硬件,将750万个晶体管压缩到一个203平方毫米的印模上。奔腾Ⅱ只比奔腾 Pro大6平方毫米。但它却比奔腾 Pro多容纳了200万个晶体管。由于使用只有0.28微米的扇出门尺寸,因此加快了这些晶体管的速度,从而达到了X86前所未有的时钟速度。Intel 64位Pentium 4 519处理器Intel 64位Pentium 4 519处理器  在接口技术方面,为了击跨INTEL的竞争对手,以及获得更加大的内部总线带宽,奔腾Ⅱ首次采用了最新的solt1接口标准,它不再用陶瓷封装,而是采用了一块带金属外壳的印刷电路板,该印刷电路板不但集成了处理器部件,而且还包括32KB的一级缓存。如要将奔腾Ⅱ处理器与单边插接卡(也称SEC卡)相连,只需将该印刷电路板(PCB)直接卡在SEC卡上。SEC卡的塑料封装外壳称为单边插接卡盒,也称SEC(Single-edgecontactCartridge)卡盒,其上带有奔腾Ⅱ的标志和奔腾Ⅱ印模的彩色图像。在SEC卡盒中,处理器封装与L2高速缓存和TagRAM均被接在一个底座(即SEC卡)上,而该底座的一边(容纳处理器核心的那一边)安装有一个铝制散热片,另一边则用黑塑料封起来。奔腾ⅡCPU内部集合了32KB片内L1高速缓存(16K指令/16K数据);57条MMX指令;8个64位的MMX寄存器。750万个晶体管组成的核心部分,是以203平方毫米的工艺制造出来的。处理器被固定到一个很小的印刷电路板(PCB)上,对双向的SMP有很好的支持。至于L2高速缓存则有,512K,属于四路级联片外同步突发式SRAM高速缓存。这些高速缓存的运行速度相当于核心处理器速度的一半(对于一个266MHz的CPU来说,即为133MHz)。奔腾Ⅱ的这种SEC卡设计是插到Slot1(尺寸大约相当于一个ISA插槽那么大)中。所有的Slot1主板都有一个由两个塑料支架组成的固定机构。一个SEC卡可以从两个塑料支架之间滑入Slot1中。将该SEC卡插入到位后,就可以将一个散热槽附着到其铝制散热片上。266MHz的奔腾Ⅱ运行起来只比200MHz的奔腾Pro稍热一些(其功率分别为38.2瓦和37.9瓦),但是由于SEC卡的尺寸较大,奔腾Ⅱ的散热槽几乎相当于Socket7或Socket8处理器所用的散热槽的两倍那么大。除了用于普通用途的奔腾Ⅱ之外,Intel还推出了用于服务器和高端工作站的Xeon系列处理器采用了Slot 2插口技术,32KB 一级高速缓存,512KB及1MB的二级高速缓存,双重独立总线结构,100MHz系统总线,支持多达8个CPU。为了对抗不可一世的奔腾 Ⅱ,在1998年中,AMD推出了K6-2处理器,它的核心电压是2.2伏特,所以发热量比较低,一级缓存是64KB,更为重要的是,为了抗衡Intel的MMX指令集,AMD也开发了自己的多媒体指令集,命名为3DNow!。3DNow!是一组共21条新指令,可提高三维图形、多媒体、以及浮点运算密集的个人电脑应用程序的运算能力,使三维图形加速器全面地发挥性能。K6-2的所有型号都内置了3DNow!指令集, 使AMD公司的产品首次在某些程序应用中,在整数性能以及浮点运算性能都同时超越INTEL,让INTEL感觉到了危机。不过和奔腾 Ⅱ相比,K6-2仍然没有集成二级缓存,因此尽管广受好评,但始终没有能在市场占有率上战胜奔腾Ⅱ。  4.廉价高性能CPU的开端——Celeron  在以往,个人电脑都是一件相对奢侈的产品,作为电脑核心部件的CPU,价格几乎都以千元来计算,不过随着时代的发展,大批用户急需廉价而使用的家庭电脑,连带对廉价CPU的需求也急剧增长了。在奔腾 Ⅱ又再次获得成功之际,INTEL的头脑开始有点发热,飘飘然了起来,将全部力量都集中在高端市场上,从而给AMD,CYRIX等等公司造成了不少 乘虚而入的机会,眼看着性能价格比不如对手的产品,而且低端市场一再被蚕食,INTEL不能眼看着自己的发家之地就这样落入他人手中,又与1998年全新推出了面向低端市场,性能价格比相当厉害的CPU——Celeron。   Celeron可以说是Intel为抢占低端市场而专门推出的,当时1000美元以下PC的热销,令AMD等中小公司在与Intel的抗争中打了个漂亮的翻身仗,也令Intel如芒刺在背。于是,Intel把奔腾 II的二级缓存和相关电路抽离出来,再把塑料盒子也去掉,再改一个名字,这就是Celeron。中文名称为赛扬处理器。 最初的Celeron采用0.35微米工艺制造,外频为66MHz,主频有266与300两款。接着又出现了0.25微米制造工艺的Celeron333。  不过在开始阶段,Celeron并不很受欢迎,最为人所诟病的是其抽掉了芯片上的L2 Cache,自从在奔腾 Ⅱ尝到甜头以后,大家都知道了二级缓存的重要性,因而想到赛扬其实是一个被阉割了的产品,性能肯定不怎么样。实际应用中也证实了这种想法,Celeron266装在技嘉BX主板上,性能比PII266下降超过25%。而相差最大的就是经常须要用到二级缓存的程序。  Intel也很快了解到这个情况,于是随机应变,推出了集成128KB二级缓存的Celeron,起始频率为300Mhz,为了和没有集成二级缓存的同频Celeron区分,它被命名为Celeron 300A。有一定使用电脑历史的朋友可能都会对这款CPU记忆犹新,它集成的二级缓存容量只有128KB,但它和CPU频率同步,而奔腾 Ⅱ只是CPU频率一半,因此Celeron 300A的性能和同频奔腾 Ⅱ非常接近。更诱人的是,这款CPU的超频性能奇好,大部分都可以轻松达到450Mhz的频率,要知道当时频率最高的奔腾 Ⅱ也只是这个频率,而价格是Celeron 300A的好几倍。这个系列的Celeron出了很多款,最高频率一直到566MHz,才被采用奔腾Ⅲ结构的第二代Celeron所代替。  中央处理器为了降低成本,从Celeron 300A开始,Celeron又重投Socket插座的怀抱,但它不是采用奔腾MMX的Socket7,而是采用了Socket370插座方式,通过370个针脚与主板相连。从此,Socket370成为Celeron的标准插座结构,直到现在频率1.2Ghz的Celeron CPU也仍然采用这种插座。   5、世纪末的辉煌——奔腾III  在99年初,Intel发布了第三代的奔腾处理器——奔腾III,第一批的奔腾III 处理器采用了Katmai内核,主频有450和500Mhz两种,这个内核最大的特点是更新了名为SSE的多媒体指令集,这个指令集在MMX的基础上添加了70条新指令,以增强三维和浮点应用,并且可以兼容以前的所有MMX程序。不过平心而论,Katmai内核的奔腾III除了上述的SSE指令集以外,吸引人的地方并不多,它仍然基本保留了奔腾II的架构,采用0.25微米工艺,100Mhz的外频,Slot1的架构,512KB的二级缓存(以CPU的半速运行)因而性能提高的幅度并不大。不过在奔腾III刚上市时却掀起了很大的热潮,曾经有人以上万元的高价去买第一批的奔腾III。可以大幅提升,从500Mhz开始,一直到1.13Ghz,还有就是超频性能大幅提高,幅度可以达到50%以上。此外它的二级缓存也改为和CPU主频同步,但容量缩小为256KB。除了制程带来的改进以外,部分Coppermine 奔腾III还具备了133Mhz的总线频率和Socket370的插座,为了区分它们,Intel在133Mhz总线的奔腾III型号后面加了个“B”, Socket370插座后面加了个“E”,例如频率为550Mhz,外频为133Mhz的Socket370 奔腾III就被称为550EB。看到Coppermine核心的奔腾III大受欢迎,Intel开始着手把Celeron处理器也转用了这个核心,在2000年中,推出了Coppermine128核心的Celeron处理器,俗称Celeron2,由于转用了0.18的工艺,Celeron的超频性能又得到了一次飞跃,超频幅度可以达到100%。  6.AMD的绝地反击——Athlon  在AMD公司方面,刚开始时为了对抗奔腾III,曾经推出了K6-3处理器。K6-3处理器是三层高速缓存(TriLevel)结构设计,内建有64K的第一级高速缓存(Level 1)及256K的第二层高速缓存(Level 2),主板上则配置第三级高速缓存(Level 3)。K6-3处理器还支持增强型的3D Now。指令集。由于成本上和成品率方面的问题,K6-3处理器在台式机市场上并不是很成功,因此它逐渐从台式机市场消失,转进笔记本市场。真正让AMD扬眉吐气的是原来代号K7的Athlon处理器。Athlon具备超标量、超管线、多流水线的Risc核心(3Way SuperScalar Risc core),采用0.25微米工艺,集成2,200万个晶体管,Athlon包含了三个解码器,三个整数执行单元(IEU),三个地址生成单元(AGU),三个多媒体单元(就是浮点运算单元),Athlon可以在同一个时钟周期同时执行三条浮点指令,每个浮点单元都是一个完全的管道。K7包含3个解码器,由解码器将解码后的macroOPS指令(K7把X86指令解码成macroOPS指令,把长短不一的X86指令转换成长短一致的macroOPS指令,可以充分发挥RISC核心的威力)送给指令控制单元,指令控制单元能同时控制(保存)72条指令。再把指令送给整数单元或多媒体单元。整数单元可以同时调度18条指令。每个整数单元都是一个独立的管道,调度单元可以对指令进行分支预测,可以乱序执行。K7的多媒体单元(也叫浮点单元)有可以重命名的堆栈寄存器,浮点调度单元同时可以调度36条指令,浮点寄存器可以保存88条指令。在三个浮点单元中,有一个加法器,一个乘法器,这两个单元可以执行MMX指令和3DNow指令。还有一个浮点单元负责数据的装载和保存。由于K7强大的浮点单元,使AMD处理器在浮点上首次超过了Intel当时的处理器。   Athlon内建128KB全速高速缓存(L1 Cache),芯片外部则是1/2时频率、512KB容量的二级高速缓存(L2 Cache),最多可支持到8MB的L2 Cache,大的缓存可进一步提高服务器系统所需要的庞大数据吞吐量。Athlon的封装和外观跟Pentium Ⅱ相似,但Athlon采用的是Slot A接口规格。Slot A接口源于Alpha EV6总线,时钟频率高达200MHz,使峰值带宽达到1.6GB/S,在内存总线上仍然兼容传统的100MHz总线,现这样就保护了用户的投资,也降低了成本。后来还采用性能更高的DDR SDRAM,这和Intel力推的800MHz RAMBUS的数据吞吐量差不多。EV6总线最高可以支持到400MHz,可以完善的支持多处理器。所以具有天生的优势,要知道Slot1只支持双处理器而SlotA可支持4处理器。SlotA外观看起来跟传统的Slot1插槽很像,就像Slot1插槽倒转180度一样,但两者在电气规格、总线协议是完全不兼容的。Slot 1/Socket370的CPU,是无法安装到Slot A插槽的Athlon主板上,反之亦然。

·新世纪

Pentium 4 630处理器   Pentium 4 630处理器  进入新世纪以来,CPU进入了更高速发展的时代,以往可望而不可及的1Ghz大关被轻松突破了,在市场分布方面,仍然是Intel跟AMD公司在两雄争霸,它们分别推出了Pentium4、Tualatin核心Pentium Ⅱ和Celeron、Tunderbird核心Athlon、AthlonXP和Duron等处理器,竞争日益激烈。   1、在Intel方面,在上个世纪末的2000年11月,Intel发布了旗下第四代的Pentium处理器,也就是我们天天都能接触到的Pentium 4。Pentium 4没有沿用PIII的架构,而是采用了全新的设计,包括等效于的400MHz前端总线(100 x 4), SSE2指令集,256K-512KB的二级缓存,全新的超管线技术及NetBurst架构,起步频率为1.3GHz。  第一个Pentium4核心为Willamette,全新的Socket 423插座,集成256KB的二级缓存,支持更为强大的SSE2指令集,多达20级的超标量流水线,搭配i850/i845系列芯片组,随后Intel陆续推出了1.4GHz-2.0GHz的Willamette P4处理器,而后期的P4处理器均转到了针角更多的Socket 478插座。和奔腾III一样,第一个Pentium4核心并不受到太多的好评,主要原因是新的CPU架构还不能受到程序软件的充分支持,因此Pentium4经常大幅落后于同频的Athlon,甚至还如Intel自己的奔腾III。但在一年以后,Intel发布了第二个Pentium4核心,代号为Northwood,改用了更为精细的0.13微米制程,集成了更大的512KB二级缓存,性能有了大幅的提高,加上Intel孜孜不倦的推广和主板芯片厂家的支持,目前Pentium4已经成为最受欢迎的中高端处理器。在低端CPU方面,Intel发布了第三代的Celeron核心,代号为Tualatin,这个核心也转用了0.13微米的工艺,与此同时二级缓存的容量提高到256KB,外频也提高到100Mhz,目前Tualatin Celeron的主频有1.0、1.1、1.2、1.3Ghz等型号。Intel也推出了Tualatin核心的奔腾III,集成了更大的512KB二级缓存,但它们只应用于服务器和笔记本电脑市场,在台式机市场很少能看到。Pentium EE 840处理器 Pentium EE 840处理器  2、在AMD方面,在2000年中发布了第二个Athlon核心——Tunderbird,这个核心的Athlon有以下的改进,首先是制造工艺改进为0.18微米,其次是安装界面改为了SocketA,这是一种类似于Socket370,但针脚数为462的安装接口。最后是二级缓存改为256KB,但速度和CPU同步,与Coppermine核心的奔腾III一样。Tunderbird核心的Athlon不但在性能上要稍微领先于奔腾III,而且其最高的主频也一直比奔腾III高,1Ghz频率的里程�%A